ALM 2017

1. Interest rate analysis

Today is 1st January 2013. You find the following report on government bonds:

Last trading date		
31.12 .2012	Coupon rate (annual coupons)	Bond yield (annual compounding)
Bond maturity	$5,00 \%$	$7,945607 \%$
31.12 .2013	$5,00 \%$	$7,616424 \%$
31.12 .2014	$5,00 \%$	$7,333579 \%$
31.12 .2015	$5,00 \%$	$7,091740 \%$
31.12 .2016	$5,00 \%$	$6,885408 \%$
31.12 .2017	$5,00 \%$	$6,709395 \%$
31.12 .2018	$5,00 \%$	$6,559044 \%$
31.12 .2019	$5,00 \%$	$6,430306 \%$
31.12 .2020	$5,00 \%$	$6,319723 \%$
31.12 .2021	$5,00 \%$	$6,224383 \%$
31.12 .2022		

1.1 Determine the term structure of zero rates (the yield curve).
1.2 Determine forward rates that are consistent with the zero rates.
1.3 Produce a graph showing the zero rates and forward rates.
1.4 What does one call a yield curve that has a shape as this one?

Please state all interest rates with continuous compounding.

2. Liability funding

Today is still 1st January 2013. You want buy bonds to fund a 10 -year fixed annuity of $€ 1,000,000$ per year, starting 31.12.13.
2.1 Determine the portfolio of bonds that replicates the liability cash flow.
2.2 Determine the portfolio of bonds with maturity in 3-5-10 years that matches the present value, duration and convexity of the liability cash flow.

Please use continuously compounding interest rates in all calculations.

